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Abstract

We show that the information produced by term structure models is useful in com-

modity market asset pricing. The term structure model based characteristic (TSMC)

we develop has a natural interpretation of downside risk premium and outperforms

other well-known characteristics in explaining the cross-section of commodity returns.

None of the existing factors is able to explain the returns of the high minus low port-

folio constructed from sorting TSMC. An aggregate index constructed from individual

TSMCs predicts future stock market returns even after controlling for popular economic

predictors, suggesting that it contains unique forecasting information.
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1 Introduction

Multi-factor term structure models have long been used to study the commodity futures.

For example, Gibson and Schwartz (1990), Schwartz (1997), Casassus and Collin-Dufresne

(2005), Trolle and Schwartz (2009), Liu and Tang (2011), and Chiang, Hughen, and Sagi

(2015), among others. These studies help us understand the connection between the dy-

namics of commodity spot and futures on various tenors. The term structure models also

provide tools to effectively transform raw term structure of futures prices into information

with economic meanings, e.g., the convenience yield, and disentangle risk neutral and sta-

tistical expectations to extract risk premium measures. In the meantime, another stream of

literature in the commodity markets focusing on explaining the cross-section of commodity

returns has been developing in parallel using the well-established methodologies from the

empirical asset pricing in the equity market. For example, Yang (2013), Gorton, Hayashi,

and Rouwenhorst (2013), Szymanowska et al. (2014), and Daskalaki, Kostakis, and Ski-

adopoulos (2014) apply cross-sectional asset pricing tests to study factors and anomalies in

commodities market.

Both areas are important for understanding and investing in the commodity markets.

Considering that multi-factor term structure models economically and effectively extract

deeper information beyond simple price-based characteristics used in traditional asset pric-

ing tests, it is natural to ask if the information produced by a multi-factor term structure

model could be useful in explaining the cross-section of commodity returns. To the best

of our knowledge, this question remains unexplored in the current literature. The answer

from our empirical results is yes.

Specifically, we bring the term structure modeling and option pricing into the commodity

markets asset pricing by developing a term structure model based characteristic for indi-

vidual commodities. The term structure model we adopt is a three-factor Gaussian-affine

model of commodity spot price, convenience yield, and risk free interest rate. The model

closely follows Casassus and Collin-Dufresne (2005)’s framework, which features parsimony

and analytical solutions, and has been the standard Gaussian term structure model unify-
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ing many previous models for commodity futures pricing in the literature.1 Thanks to the

standard pricing results on affine term structure models (Dai and Singleton, 2000; Duffie,

Pan, and Singleton, 2000), the model yields closed-form solutions for futures. We extend

the model and derive analytical (up to a numerical integral) pricing formulas for the At The

Money (ATM) binary put option, which can be interpreted as the Q(risk neutral)-measure

probability of the commodity spot return being negative in the next period.

We apply the essentially affine market price of risk specification (Duffee, 2002) to specify

the P(physical)-measure dynamics of the three factors. The futures model is estimated using

Kalman Filter in conjunction with Maximum Likelihood Estimation (MLE), which is the

standard estimation method for term structure models with latent factors (see, e.g., Babbs

and Nowman, 1999), for 29 commodity futures in all four markets: Agriculture, Energy,

Livestock, and Metals, using daily term structure data of futures prices and US Treasury

bill yields (from maturities up to 12 months). The full sample period is from March 1990

to March 2021. To avoid the look-into-future bias, we re-estimate the model at each month

using data only up to the estimation month in an expanding window.

Based on the estimated model for each commodity, we infer the prices for the ATM

binary put option under both Q and P measures. Our term structure model based char-

acteristic is the difference of between the option’s prices under Q-measure and P-measure.

The fact that we take the difference between Q-measure and P-measure expectations means

this characteristic has a natural risk premium interpretation, in-line with the way premium

is defined in the variance risk premium literature (see, e.g., Bollerslev, Tauchen, and Zhou,

2009; Bekaert and Hoerova, 2014; Cheng, 2019). Also, since the expectations are for put

option payoffs, the implied premium is for the downside risk. By definition, the character-

istic has a support within -1 to 1, making it comparable cross commodities. Our analytical

results also reveal that the basis defined as the log difference between spot and futures

prices is positively related to the ATM binary put option price, i.e., the Q-measure prob-

ability of the next period return being negative. This means that the basis only partially
1 The models nested in Casassus and Collin-Dufresne (2005)’s framework include: Gibson and Schwartz

(1990), Brennan (1991), Schwartz (1997), Ross (1997), and Schwartz and Smith (2000).
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captures the downside risk premium as it ignores the physical downside risk. Therefore,

our characteristic is a theoretically better predictor than the basis for future commodity

returns.

From the panel data of the characteristic values, the Principal Components Analysis

(PCA) results show that the total variation in the values of the characteristic among all

commodities cannot be simply explained by a small set of principal components. This ob-

servation is consistent with Daskalaki, Kostakis, and Skiadopoulos (2014) who find that the

commodity markets are considerably heterogeneous and the cross-section of individual com-

modity returns can hardly be explained by a small set of common factors. We then proceed

to portfolio sorting based asset pricing tests using the characteristic. Since this charac-

teristic measures the downside risk premium of individual commodities, higher returns are

expected for taking long (short) positions on commodities with more positive (negative)

downside risk premium. Therefore, we expect the High minus Lower (H-L) portfolios would

deliver significantly positive returns on average. Indeed, our empirical results provide strong

evidence supporting this hypothesis. More concretely, our H-L portfolios deliver an average

monthly return of 0.87% with t-statistic of 2.63. They significantly outperform the H-L

portfolios based on sorting other commonly accepted benchmark measures, such as the ba-

sis and momentum (Szymanowska et al., 2014). The alpha coefficients of our H-L portfolios

are positive and significant in all regressions controlled for a wide range of factors including:

the basis (Szymanowska et al., 2014), momentum, commodity market (average returns of

all commodities’ front month futures), carry (commodity carry returns of Koijen et al.,

2018), and Fama-French five factors. We also estimate Lettau, Maggiori, and Weber (2014)

downside risk beta for our H-L portfolio returns and find it is not significant, indicating the

returns cannot be explained by the market downside risk in the existing literature.

Recent studies predict that the integration and co-movement between commodity and

stock markets should be strong due to the prevailing financialization of commodities.2 In

particular, the theoretical studies of Basak and Pavlova (2016) and Goldstein and Yang
2 Institutional investors entering commodity futures markets is referred to as the financialization of

commodities.
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(2021) show that the large inflow of financial capital from other financial markets should

lead to the segmented commodity futures markets becoming more integrated with financial

markets. In a survey paper, Cheng and Xiong (2014) show that correlations of commodity

prices with prices in other asset classes, especially stock markets, have noticeably increased

after 2000 (see Figure 3 of Cheng and Xiong, 2014).

Despite these predictions, the existing evidence on the predictive power of commodity

returns on stock index returns has been underwhelming and mixed (see, e.g., Huang, Ma-

sulis, and Stoll, 1996; Black et al., 2014; Jacobsen, Marshall, and Visaltanachoti, 2019).

We use the Partial Least Square (PLS) method of (Kelly and Pruitt, 2013, 2015) as our

primary aggregation method to construct an aggregate predictor from the time series of

individual commodity characteristics (TSMCs), denoted as TSMCP LS . It is reasonable

to assume that the true predictor is unobservable, and each commodity characteristic is

just a proxy of it. Statistically, our main target is to extract an aggregate predictor from

its underlying proxies (TSMCs) related only to stock returns by removing all noises of the

individual errors irrelevant to stock returns. Further, we also use a recently developed ag-

gregation method named sPCA of Huang et al. (2022). By proposing sPCA, Huang et al.

(2022) improve PCA by scaling each predictor according to its predictive power for future

stock returns, e.g., assigning more weight to more important predictors in forecasting future

returns. In addition, we also consider the simple (average) combination of the aggregate

predictors constructed with PLS and sPCA. Thus, in addition to TSMCP LS , we have two

alternative aggregate predictors, TSMCsP CA and TSMCP LS+sP CA.

For the out-of-sample analysis, we use both the R2
OS metric of Campbell and Thompson

(2008) and the mean squared forecasting errors (MSFE)-adjusted statistic of Clark and

West (2007). By using a 20-year expanding estimation window, we show that, TSMCP LS ,

TSMCsP CA and TSMCP LS+sP CA generate economically sizable out-of-sample R2
OS across

prediction horizons of up to two years, which are statistically significant in most cases. These

results indicate that through the lens of the term structure model more forward looking

information than the commodity returns per se can be extracted for effectively predicting

stock index returns, confirming the theoretical predictions by Basak and Pavlova (2016)
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and Goldstein and Yang (2021) regarding the interconnection between commodity markets

and stock market.

We also show that mean-variance investors can yield large investment gains from an

asset allocation perspective by using our three aggregate TSMC predictors. For a risk

aversion coefficient of one, the annualized certainty equivalent return (CER) gains by us-

ing TSMCP LS , TSMCsP CA and TSMCPLS + sPCA are 10.24%, 6.52%, and 10.25%,

respectively, at the monthly horizon. The large investment gains maintain for longer in-

vestment horizons and alterative risk aversion coefficients, while they remain sizable after

considering for transaction costs.

We further examine whether the out-of-sample forecasting performance exists by using

alternative econometric and machine learning methods. By considering the combination

ENet (C-ENet) of Dong et al. (2022), the simple (average) combination forecast of the

individual univariate forecasts, and the Ridge shrinkage regression of Hoerl and Kennard

(1970), we show that all these alternative methods produce economically sizable out-of-

sample R2
OS ’s across prediction horizons, while all the R2

OS ’s generated by C-ENet and

Ridge are statistically significant across prediction horizons according to the MSFE-adjusted

statistics.

The uniqueness of our contributions lies in the fact that we contribute to the joint venue

of three important strands of literature: a) Term structure of futures modeling and option

pricing for commodities. In a pioneering study, Gibson and Schwartz (1990) develops and

empirically tests a two-factor term structure model for pricing financial and real assets

contingent on the price of oil. This two-factor model is subsequently enhanced in Schwartz

(1997) by allowing mean-reverting in both spot price and convenience yield. Casassus

and Collin-Dufresne (2005) unify the previous models into a three-factor Gaussian affine

model with maximal flexibility in the sense of Dai and Singleton (2000). There are further

works extending the framework to incorporate stochastic volatility, e.g., Trolle and Schwartz

(2009), Liu and Tang (2011), and Chiang, Hughen, and Sagi (2015).

b) Asset pricing of cross-sectional commodity returns. This literature focuses on ex-

plaining the cross-section of commodity returns using the well-established methodologies
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from the empirical asset pricing in the equity market. For example, Szymanowska et al.

(2014) and Yang (2013) find the commodity basis has pricing power in the cross-section of

commodity portfolios. Daskalaki, Kostakis, and Skiadopoulos (2014) and Bakshi, Gao, and

Rossi (2019) show momentum also has asset pricing implication in the commodity markets.

Other factors such as commodity market average returns, inventory, and hedging pressure

have also been proposed (see, e.g., Erb and Harvey, 2006; De Roon, Nijman, and Veld,

2000; Gorton, Hayashi, and Rouwenhorst, 2013).

c) Stock market return prediction. Welch and Goyal (2008) examine the performance

of variables that have been suggested as good predictors of the equity premium and find

that these variables have poor performance both in-sample and out-of-sample. Ferreira

and Santa-Clara (2011) propose the sum-of-the-parts (SOP) method and use it to forecast

stock market returns out of sample, they find that the SOP method produces statistically

and economically significant gains and performs better than the historical mean. Huang

et al. (2015) apply the partial least square method to traditional investor sentiment proxies

and construct an aligned investor sentiment index that has strong predictive power on the

aggregate stock market returns. Jiang et al. (2019) find a sentiment index based on the

aggregated textual tone of corporate financial disclosures that is a strong negative predictor

of future aggregate stock market returns. Jacobsen, Marshall, and Visaltanachoti (2019)

empirically show that industrial metals such as copper and aluminium predict stock market

returns. Using various shrinkage techniques, Dong et al. (2022) provide evidence on the

link between long-short anomaly portfolio returns and the predictability of the aggregate

market returns based on 100 representative anomalies from the literature.

We extend existing term structure modeling with option pricing components and develop

a term structure model based characteristic for individual commodities, contributing to (a).

We show that this characteristic has a natural interpretation of downside risk premium and

strong explanatory power for the cross-section of individual commodity returns, contributing

to (b). We also confirm that an aggregate commodity index constructed from the individual

term structure model based characteristics has strong predictive power for the stock market

returns that complement the role of other typical economic predictors, contributing to (c).
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The remainder of the paper is organized as follows. Section 2 presents the model and

develops the term structure model based characteristic. Section 3 describes the data, model

estimation, and summary of the characteristic estimates. Sections 4 and 5 present the

empirical results on the cross-sectional asset pricing of commodity returns and predicting

stock market returns, respectively. Finally, section 6 concludes the paper. Appendices

contain technical details and supplementary results.

2 Term structure model for futures and option pricing

2.1 Commodity futures

We follow Casassus and Collin-Dufresne (2005)’s framework and set up a three-factor

{r, δ,X} system to model the log spot commodity price, where r is the risk free inter-

est rate, δ is the convenience yield, and X is the log spot commodity price. We start from

the specification of the risk neutral Q-measure dynamic.

drt = κr (r̄− rt) dt+ σrdz
Q
r,t, (2.1)

dδ0
t = κδ

(
δ̄− δ0

t

)
dt+ σδdz

Q
δ,t, (2.2)

dXt =

[
rt −

(
δ0

t + αrrt + αXXt

)
− 1

2σ
2
X

]
dt+ σXdz

Q
X,t, (2.3)

where zQ
r,t, z

Q
δ,t, and zQ

X,t are three correlated Wiener processes under the Q-measure. Under

this specification, the convenience yield δt is a linear combination of δ0
t , rt and Xt, i.e.,

δt = δ0
t + αrrt + αXXt. Under the Q-measure, the drift term of Xt is rt − δt − 1

2σ
2
X which

ensures the arbitrage-free pricing of the futures price. Therefore, we can price the time

t futures maturing at T , Ft(T ), as the conditional expectation of exp (XT ) under the Q-

measure:

Ft(T ) = E
Q
t (e

XT ).

For notational convenience, we rewrite the three-factor system in the matrix form. De-

note Yt as [rt, δt,Xt]⊺:

dYt = (K0 +K1Yt)dt+
√
ΣdZQ

t , (2.4)
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where ZQ
t is an IID 3 × 1 Wiener processes vector under the Q-measure, and

K0︸︷︷︸
3×1

=


κrr

κδδ

−σ2
X
2

 , K1︸︷︷︸
3×3

=


−κr 0 0

0 −κδ 0

1 − αr −1 −αX

 , Σ︸︷︷︸
3×3

=


σ2

r σrσδρrδ σXσrρXr

σrσδρrδ σ2
δ σXσδρXδ

σXσrρXr σXσδρXδ σ2
X

 .

The system of (2.4) is a multivariate Gaussian process, the affine techniques developed

in Duffie, Pan, and Singleton (2000), Dai and Singleton (2000), and Casassus and Collin-

Dufresne (2005) can be readily applied to solve the futures price, E
Q
t

(
eXt+τ

)
. Specifically,

we have:

E
Q
t

(
eXt+τ

)
= E

Q
t

(
eι⊺Yt+τ

)
= eA(τ )+B(τ )⊺Yt ,

and A (τ ) and B (τ ) satisfy the following system of ODEs

∂B (τ )

∂τ
= K⊺

1B (τ ) (2.5)

∂A (τ )

∂τ
= K⊺

0B (τ ) +
1
2B (τ )⊺ΣB (τ ) (2.6)

with boundary conditions B (0) = ι and A (0) = 0. From (2.5), we have:

B (τ ) = exp(K⊺
1 τ )ι.

Given B (τ ), from (2.6) we obtain:

A (τ ) =
ι⊺ [

∫ τ
0 exp (K1s)Σ exp (K⊺

1 s) ds] ι

2 + ι⊺ [exp(K1τ ) − I ]K−1
1 K0.

In summary, the futures prices can be written as:

Ft(t+∆t) = e
ι⊺Ω(K1,∆t)ι

2 +ι⊺[exp(K1∆t)−I ]K−1
1 K0+ι⊺ exp(K1∆t)Yt , (2.7)
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where ι = [0, 0, 1]⊺, I is the identity matrix, and

Ω (K1,∆t) =
∫ ∆t

0
exp (K1s)Σ exp (K⊺

1 s) ds.

2.2 Option pricing and TSMC

Under this setting, we consider the price of a τ -maturity At-The-Money (ATM) binary put
option with payoff being one if Xt+τ < Xt and zero otherwise.3 By Proposition 2 in Duffie,
Pan, and Singleton (2000), we have:

E
Q
t

(
1{Xt+τ <Xt}

)
=

1
2 − 1

π

∫ ∞

0

exp
(

− v2ι⊺Ω(K1,τ )ι
2

)
Im

exp

iv

 ι⊺ [exp(K1τ ) − I ]K−1
1 K0

+ι⊺ exp(K1τ )Yt − Xt


v

dv

=
1
2 − 1

π

∫ ∞

0
exp

(
−v2ι⊺Ω (K1, τ ) ι

2

)
sin

vι⊺

 [exp(K1τ ) − I ]K−1
1 K0

+ exp(K1τ )Yt − Yt

 /v dv

=
1
2 − 1

π

∫ ∞

0
exp

(
−v2ι⊺Ω (K1, τ ) ι

2

)
sin [vG(K0, K1, τ , Yt)] /v dv (2.8)

where Im(c) denotes the imaginary part of c, and

G(K0,K1,∆t,Yt) = ι⊺ [exp(K1∆t) − I ]
(
K−1

1 K0 + Yt

)
.

By definition, the price of the ATM binary put option BQ
t (t+∆t) = E

Q
t

(
1{Xt+∆t<Xt}

)
.

When valued using information calibrated from the commodity futures, BQ
t (t+∆t) has a

natural economic interpretation: it measures the market assessment of the downside risk

implicit in the term structure of the commodity futures prices, as (2.8) is the Q measure

probability of the spot price at time t+∆t being lower than the current spot price at time

t.

We follow Duffee (2002)’s essentially affine market price of risk specification and specify

3 Rigorously speaking the option’s pricing should be E
Q
t

(
e

−
∫ t+τ

t
rsds

1{Xt+τ <Xt}

)
. Since we only

consider τ = one month in our empirical study, the difference is negligible.
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the SDE of Yt under the physical P-measure as4

dYt = (KP
0 +KP

1 Yt)dt+
√
ΣdZP

t . (2.9)

Given (2.9), we define the P measure probability of the spot price at time t+∆t being

lower than the current spot price at time t as:

BP
t (t+∆t) = EP

t

(
1{Xt+∆t<Xt}

)
(2.10)

=
1
2 − 1

π

∫ ∞

0

exp
(

−v2ι⊺Ω(KP
1 ,∆t)ι

2

)
sin

[
vG(KP

0 ,KP
1 ,∆t,Yt)

]
v

dv. (2.11)

By definition, BP
t (t+∆t) measure the physical (statistical) downside risk implied by the

historical dynamics of the commodity futures prices. Our model-based commodity charac-

teristic, which we refer to as Term Structure Model based Characteristic (TSMC), is defined

as the difference between BQ
t (t+∆t) and BP

t (t+∆t):

TSMCt(∆t) = BQ
t (t+∆t) −BP

t (t+∆t). (2.12)

TSMCt(∆t) has a natural risk premium interpretation. This is similar to the way pre-

mium is defined in the variance risk premium literature (see, e.g., Bollerslev, Tauchen, and

Zhou, 2009). By definition, TSMCt’s support is within -1 to 1, which makes it naturally

comparable cross commodities and an ideal measure to be used for index construction.

2.3 Downside risk interpretation of the basis

The basis in the commodity literature is often defined as the log difference between spot

and near maturity futures prices (Yang, 2013; Daskalaki, Kostakis, and Skiadopoulos, 2014),

i.e., Basist = Xt − logFt(t+∆t).
4This specification imposes zero correlation across commodities on the correlation structure of the vector

of Wiener processes under the P-measure. This allows us to avoid an intractable joint estimation with
all commodities and estimate the model for individual commodities separately. As shown in Casassus and
Collin-Dufresne (2005), relaxing this restriction offers little improvement in the model estimation.
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In the light of (2.7), (2.8) can be rewritten as a function of the basis:

BQ
t (t+∆t) =

1
2 +

1
π

∫ ∞

0
e− v2ι⊺Ω(K1,∆t)ι

2 sin
[
v

(
Basist +

ι⊺Ω (K1,∆t) ι
2

)]
/v dv. (2.13)

From (2.13), we can see that the market assessment of the downside risk BQ
t (t+∆t) clearly

increases with the basis. This theoretical finding is in-line with those in Szymanowska

et al. (2014) and Gorton, Hayashi, and Rouwenhorst (2013) who infer from their models

that the basis contains information about the spot risk premium. As we shown above,

the clean measure of risk premium is TSMCt(∆t) in (2.12). Therefore, even though the

basis contains information about the risk premium, it only measures the total price (Q-

expectation) of downside risk that does not offset the P-measure downside risk. Given the

theoretical superior of our risk premium measure over the basis, we expect TSMCt to have

better performance in commodity asset pricing tests than the basis and other price based

measures, e.g., the momentum.

3 Data and model estimation

3.1 Data

We use the daily data on 29 individual commodity futures contracts from Refinitiv. The

names and types are summarized in Table 1. The futures maturities range from one month

to 12 months (with a few exceptions up to 18 months in the early part of the sample). The

data sample covers period from March 1990 to March 2021. We reserve the data from March

1990 to December 2000 for initial model estimation, and study the asset pricing implications

using the data from January 2001 to March 2021 where all model outputs are out-of-sample

estimates. We plot the cross-sectional distribution of the monthly total returns (start from

January 2001 as one) of the front-month futures in Figure 1. The summary statistics of the

front-month monthly returns during the same period are presented in Table 1. To estimate

the parameters of the risk free interest rate model, we also use four-week, three-month, six-

month, and one-year Treasury bill yields data downloaded from Federal Reserve Economic
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Data at Federal Reserve Bank of St. Louis. The sample period of the Treasury bill yields

is matched with that of the commodity futures data.

[Insert Table 1 and Figure 1 about here]

3.2 Kalman filter and maximum likelihood estimation

Consistent with Casassus and Collin-Dufresne (2005), we set:

KP
0 =


αP

r

αP
δ

αP
X

 and KP
1 =


βP

r 0 0

0 βP
δ 0

βP
rX βP

δX βP
X

 .

This setting ensures that the short rate follows an autonomous Ornstein-Uhlenbeck (OU)

process under both P and Q measures, and the component of the convenience yield (δ0
t )

that is linearly independent of interest rate and spot price level under Q measures remains

so under the P measure.
Since the log of the futures price is an affine function of the state variables, we can employ

the Kalman filter (KF) in conjunction with MLE for the model estimation (see, e.g., Babbs
and Nowman, 1999; De Jong, 2000). Details of the KF are given in Appendix A. We
discretize and re-write the model in state space form, and use log of the futures price as the
measurement equation. Specifically, the state space representation is:

Yt =
[
exp(KP

1 h) − I
] (

KP
1

)−1
KP

0 + exp(KP
1 h)Yt−h +

√
Ω

(
KP

1 , h
)
ϵt, ϵt ∼ IIDN (0, I3×3)

Transition Equation

log
(

F
∆t
t

)
=

ι⊺Ω (K1, ∆t) ι

2 + ι⊺ [exp(K1∆t) − I ]K−1
1 K0 + ι⊺ exp(K1∆t)Yt + ξt, ξt ∼ IIDN (0, sInt×nt ) ,

Measurement Equation

where h is the time interval (one day), ξt is the measurement error on day t, and nt is the

number of futures on day t. The measurement log
(
F

∆t
t

)
consists of log of all available

futures (with various time to maturities) close prices observed on day t. Given the normally

distributed measurement error, the distribution of log
(
F

∆t
t

)
conditional on the informa-

tion set Ft−h is a multi-dimensional normal distribution with the mean log
(
F

∆t
t|t−h

)
and
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covariance matrix P
log

(
F

∆t
t

). Thus, the transition density of log
(
F

∆t
t

)
can be written as:

pt =

(2π)nt
2

∣∣∣∣∣∣Plog
(

F
∆t
t

)∣∣∣∣∣∣
1
2


−1

exp

−1
2

[
log

(
F

∆t
t

)
− log

(
F

∆t
t|t−h

)]⊺
P−1

log
(

F
∆t
t

) [
log

(
F

∆t
t

)
− log

(
F

∆t
t|t−h

)] ,

where log
(
F

∆t
t|t−h

)
and P

log
(

F
∆t
t

) are outputs from the Kalman filter update. Then the

log-likelihood function is given by:

ln L ∝ −
N∑

t=1
log (pt) .

where N is the total number of days in the sample. Please note that the parameters

of the risk-free interest rate rt cannot be identified using only futures prices, they need

to be estimated separately using the Treasury yields data (Casassus and Collin-Dufresne,

2005). Since the interest rate is modelled as a one-factor OU process, it is essentially the

Vasicek (1977) model.5 The same estimation method above can be applied to estimate the

parameters of rt using the Treasury yield data.

To make sure the TSMC estimates are ex-ante without look ahead bias, we conduct

an expending window out-of-sample estimation. More concretely, we re-estimate the model

each month after adding one month of daily data to the sample in each estimation. Each

month we use the KF based on the previous month’s model parameters to filter out state

variables from the futures prices and compute the TSMCs. Since we use monthly returns in

the asset pricing tests, we compute the TSMC with ∆t = one month. Hereafter, all referred

TSMCs are associated with ∆t = one month unless stated otherwise explicitly.

3.3 Summary of the characteristics

In Figure 2, we plot the cross-sectional distribution of the TSMCs in the four types of

commodities from 2001 to 2021. On average, the TSMCs are slightly negative after 2006,
5Details of the model can also be found in Casassus and Collin-Dufresne (2005, Appendix B).
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especially so during the 2008 financial crisis. Looking at the aggregate level in the four types

individually, the TSMCs in Agriculture (Energy) are more negative (positive), while those

in Livestock and Metals are closer to zero with higher volatility found in Livestock than

in Metals. Cross-sectionally, Agriculture and Energy exhibit more cross-sectional variation

than Livestock and Metals over the years. It is worth noting that in Energy there is a

shock to the cross-section of the TSMCs during 2014 to 2016, which corresponds to the

steep plunge in the oil price during this period (Friedman, 2014). This large spike in the

cross-sectional dispersion in the TSMCs reflects the unprecedented uncertainty shock. The

differential cross-sectional variation among the commodities over time alongside its unified

support within -1 and 1 make the individual TSMC a great characteristic to conduct asset

pricing tests in the commodity markets.

[Insert Figure 2 about here]

3.4 Principal component analysis

In this subsection, we carry out the Principle Component Analysis (PCA) on the panel

the TSMC estimates. The results show that the total variation in the TSMCs cannot be

explained by a small set of common components.

Due to that several commodity index have many missing values before 2000, we perform

the PCA based on the out-of-sample period, starting from January 2001 to March 2021.

[Insert Figure 4 about here]

Figure 4 plots the variation of the 29 TSMCs explained by the first 10 PCs. From the

plot, we see that none of the PCs can catch up large variations in the panel of the TSMCs.

The first, second, and thrid PCs only explain 36%, 14% and 8%, respectively, of the total

variation. The remaining PCs hardly have explanatory power more than 5%. All 10 PCs

together can only explain less than 90% of the total variation.

Next, we examine if there is any commonality in factor loadings of the TSMCs on these

PCs. We run time series regressions (regressing all 29 TSMCs on the first five PCs) and

collect the loading coefficients. A summary of these coefficients is presented in Table 2.
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[Insert Table 2 about here]

From Table 2, we find that there is no clear pattern can be found in the loading coefficients’

distribution, neither at individual level nor at sector level. All the loading estimates are

small on average and with sizable cross-sectional standard deviations.

In general, we conclude that no small set of common factors can explain the overall vari-

ation in the panel of the TSMCs. This observation is consistent with Daskalaki, Kostakis,

and Skiadopoulos (2014) who find that the commodity markets are considerably heteroge-

neous.

4 Commodity asset pricing

4.1 Portfolio sorting

Since the TSMC measures the downside risk premium of individual commodities, a positive

TSMC indicates that investors are willing to pay more to avoid the downside risk. More

concretely, the TSMC is the difference between the market value of the ATM binary put

option and its actuarial value. The higher TSMC, the more investors are willing to pay

for the put beyond what can be justified by its physical risk. Taking long positions in a

commodity is somewhat analogous to writing put options for this commodity. Therefore,

when a commodity’s TSMC is high (low), positive returns are expected for taking long

(short) positions on this commodity. Given this insight, we expect the High minus Lower

(H-L) portfolio based on the TSMC would deliver significantly positive returns on average.

We form quartile portfolios using all 29 commodity front month futures returns based

on the TSMCs at one month horizon. The formation period is one day before the start of

the one month holding period. The portfolios are rebalanced at teh end of each month. The

portfolio sorting results are presented in Table 3. For benchmarking purposes, we also form

portfolios based on the basis (the difference between the log of front month futures and the

log of second month futures on the formation period) and the momentum (the past one year

cumulative return on the formation period). These two benchmarks have been commonly

studied in the previous commodity asset pricing literature, e.g., Yang (2013), Szymanowska
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et al. (2014), and Daskalaki, Kostakis, and Skiadopoulos (2014).

[Insert Table 3 about here]

From Table 3, we can see that in the full sample (January 2001 to March 2021), only the

TSMC H-L portfolios show significant returns: an average monthly return of 0.87% with

t = 2.63, while Basis and Momentum produces insignificant returns: an average monthly

return of 0.29% (t = 0.84) for Basis and 0.02% (t = 0.04) for Momentum. To further

understand the difference between performance of the TSMC and the benchmarks, we also

conduct subsample analysis. In the first half sample (January 2001 to May 2011), we find

the TSMC and Basis portfolios have similar performance and they all deliver significant

returns: an average monthly return of 0.93% (t = 1.98) for TSMC and 0.94% (t = 1.91)

for Basis. Although insignificant, the Momentum portfolios also deliver a sizeable average

monthly return of 0.76% (t = 1.36). The benchmark results from the first half sample

confirm the findings documented in the previous studies using data before 2011. However,

when looking at the second half of the sample, we see a different picture. Although less

significant than the first half and the full sample returns, the TSMC portfolios produce a

significant average monthly return of 0.82% (t = 1.73). In contrast, the average montly

returns from both the Basis and Momentum portfolios turn negative and insignificant (-

0.4% with t = -0.84 for Basis and -0.76% with t = -1.43 for Momentum). These observations

show that the significant pricing power of Basis and Momentum documented in the previous

literature disappears in recent 10 years of data, while the TSMC has robust performance

in both samples. These observations become even clearer when we plot out the cumulative

returns of the three portfolios over time. The time series are shown in Figure 3. Before

2015, the cumulative returns of all three portfolios have a clear upward trajectory. After

2015, the TSMC portfolio continues with its upward trajectory, while the two benchmarks

diverge from the TSMC portfolio and develop into clear downward trajectories.

[Insert Figure 3 about here]
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4.2 Potential explanations for the TSMC portfolio

By eyeballing Figure 3, we can also easily tell that the TSMC portfolio’s returns can hardly

be explained by the Basis or Momentum factor. We verify this conjecture by following

the standard asset pricing practice and examining the alpha coefficients from regressing

the TSMC portfolio returns on various other factors. These factors include: Basis, Basis

High and Low portfolios, Momentum, commodity market portfolio, commodity carry factor

(Koijen et al., 2018) and Fama-French five factors (Fama and French, 2015). Here, the Basis

and Momentum are the High - Low portfolios. We also include the separate Basis High

and Basis Low portfolios as another control considering the fact that Szymanowska et al.

(2014) show that in additional to the Basis H-L’s explanatory power on commodity futures’

spot premia, the two separate portfolios can explain commodity futures’ term premia. The

results are shown in the left panel of Table 4. From the results, we can clearly see all alpha

coefficients are significant on at least 5% level, indicating none of these factors is able to

explain our TSMC portfolio’s returns.

[Insert Table 4 about here]

Since the TSMC has a natural interpretation of downside risk premium, we explore

whether common downside risk can explain the TSMC portfolio’s returns. Lettau, Maggiori,

and Weber (2014) (LMW) propose a downside risk CAPM in which expected returns are

driven by the market beta and the market beta conditional on low returns. Following

Koijen et al. (2018), we examine the TSMC portfolio’s downside risk exposure by checking

the significance of its LMW downside risk beta. The LMW downside risk beta is estimated

by conditionally regressing the TSMC portfolio’s returns on the stock market returns when

the market returns are one standard deviation below their sample mean. For comparison, we

also apply the same estimation to the Basis, Momentum, and commodity market portfolios.

The results are reported in Table 5.

[Insert Table 5 about here]

The downside risk betas are significant for the Basis (at 10% level) and commodity

market (at 1% level) portfolios, which is consistent with some of the results in Lettau,
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Maggiori, and Weber (2014) and Koijen et al. (2018). However, the downside risk beta

is not significant for the TSMC portfolio which also has a highly significant alpha. These

results indicate that despite the fact of the TSMC being a downside risk premium measure,

the TSMC portfolio’s returns cannot be explained by the market downside risk. Taken

together, our results cannot be explained by, and are not subsumed by, a variety of well-

established factors and risks in both commodity and equity markets.

4.3 Can TSMC returns explain other factors?

As shown above that the TSMC portfolio’s returns are not spanned by existing factors, we

now turn the tables and ask how much of existing factors can be explained by the TSMC

portfolio. This is presented in the right panel of Table 4, where we report time-series

regressions of various existing factors on the TSMC portfolio returns.

The first column shows the factors under consideration. The column labeled “Mean”

reports the mean of the factor returns over the 2001 to 2021 period. The remaining three

columns report the regression intercept (Alpha), the loading on the TSMC H-L portfolio

returns (Beta), and the regression R2. We first examine the commodity related factors.

They are Basis H-L returns, Basis High portfolio returns, Basis Low portfolio returns,

Momentum H-L returns, Commodity Market returns, and Carry returns of Koijen et al.

(2018). The results are reported in the first six rows. Among the six commodity related

factors, only the Carry has a significant mean value of 56 basis points per month in our

sample, but this drops to a statistically insignificant 22 basis points when we account for

comovement the TSMC H-L returns. The regression R2 for the Carry is as high as 16%,

indicating our TSMC does a good job explaining the Carry returns. Although the mean

values of other commodity related factors are statistically insignificant, they all load on

the TSMC H-L return significantly, as shown by the significant beta coefficients in column

labeled “Beta”. The R2’s are also as high as 20% and 11% for the Basis and Basis High,

respectively, again confirming the strong explanatory power of the TSMC on Basis/Carry

premiums. Given the theoretical connection between the TSMC and Basis revealed in

Section 2.3, and that TSMC amounts to a better risk premium measure than Basis, the
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results observed here are somewhat expected.

Next, we examine the equity market related factors. Here we consider the Fama-French

five factors individually. They are FF5F-mkt (market factor, the excess return on the equity

market), FF5F-smb (size factor, the average return on the nine small stock portfolios minus

the average return on the nine big stock portfolios), FF5F-hml (value factor, the average

return on the two value portfolios minus the average return on the two growth portfolios),

FF5F-rmw (Robust Minus Weak factor, the average return on the two robust operating

profitability portfolios minus the average return on the two weak operating profitability

portfolios), and FF5F-cma (Conservative Minus Aggressive, the average return on the two

conservative investment portfolios minus the average return on the two aggressive invest-

ment portfolios). Although the R2’s are lower for the equity factors in general, the TSMC

still manages to bring the mean values of FF5F-mkt and FF5F-smb from significant 65

basis points and 30 basis points down to insignificant 48 basis points and 22 basis points,

respectively. It is worth mentioning that FF5F-mkt load highly significantly on the TSMC

portfolio with a beta coefficient of 0.2. Considering the fact that the construction of TSMC

does not use any equity market information directly, this explanatory power on the equity

market factor, FF5F-mkt, is impressive. The TSMC does less well at explaining the other

three FF5F factors, as reflected in lower R2’s, although FF5F-rmw and FF5F-cma still load

significantly and negatively on the TSMC portfolio.

In sum, as expected the TSMC portfolio can explain the Basis/Carry factors of the

commodity market well. We also find that the TSMC portfolio does a good job explaining

equity factors, especially the equity market factor, FF5F-mkt. This points to an interesting

interaction between TSMCs and the equity market returns, which we explore in more detail

from a different perspective in the next section.

5 Predicting stock market returns using TSMCs

In previous sections, we show the TSMCs are a characteristic that explains the cross-

sectional commodity returns. In this section, we show that they also have predictive power
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going beyond the commodity markets and can be used to forecast the future stock market

returns. The last two decades have witnessed extensive financialization of commodities in

which institutional investors enter commodity futures markets. As a result of this pre-

vailing financialization, theoretical studies (see Basak and Pavlova, 2016; Goldstein and

Yang, 2021) predict strong co-movement of commodity and stock markets. However, the

existing evidence on the predictive power of commodity returns on stock index returns has

been underwhelming and mixed (see, e.g., Huang, Masulis, and Stoll, 1996; Black et al.,

2014; Jacobsen, Marshall, and Visaltanachoti, 2019). The strong evidence of the TSMC’s

predictive power on the stock market returns suggests that through the lens of the term

structure model more forward looking information than the commodity returns per se can

be extracted for effective prediction.

5.1 In-sample analysis and comparison with economic variables

We use the Partial Least Square (PLS) (PLS, see, e.g., Kelly and Pruitt, 2013, 2015) to

collectively and efficiently construct aggregate predictors from the individual commodity

indices by eliminating the negative effects of irrelevant to forecasting terms based on the

future stock market excess returns. See ?? for technical details on the PLS. Further, we

use a recently developed aggregation method named sPCA of Huang et al. (2022), and also

consider the simple (average) combination of the aggregate predictors constructed with PLS

and sPCA. Table 6 provides the pairwise correlations among the 24 individual TSMCs used

in this section6. The correlation coefficients range from -0.69 to 0.90, suggesting that these

24 individual TSMCs capture both common and different aspects. Hence, aggregate TSMC

predictors are necessary since using only individual TSMCs is unlikely to be complete in

terms of the aggregate effect for forecasting the stock market.

[Insert Table 6 about here]
6We use 24 (out of the 29 in Table 1) individual TSMCs with full data history over the entire sample

period (February 1994 to March 2021). Full history of data is necessary for the estimation of the various
aggregation methods.
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Specifically, we first run the following univariate predictive regression:

Rt+1 = α+ βXt + ϵt+1, (5.1)

where the stock market excess return at t+ 1 (Rt+1) is defined as the difference between

the value-weight return of all CRSP firms in the US and the one-month T-bill rate. Xt is

either one of the 14 economic variables in Welch and Goyal (2008), the investor sentiment

index of Huang et al. (2015) denoted as S (available up to Dec 2020), the short interest

index of Rapach, Ringgenberg, and Zhou (2016) denoted as SII, or an aggregate predic-

tor of TSMCs constructed with PLS (TSMCP LS), sPCA (TSMCsP CA), and PLS+sPCA

(TSMCP LS+sP CA).

The in-sample forecasting ability of Xt is tested by estimating regression Equation (5.1)

over the entire sample period (February 1994 to March 2021). The null hypothesis is that

Xt has no predictive power (β̂ = 0) and in this case, regression equation (5.1) reduces

to Rt+1 = α+ εt. The alternative hypothesis is that β is different from zero, and hence

Xt contains useful information for predicting Rt+1. We use the Newey and West (1987)

standard error to compute the t-statistic for β̂.

Table 7a shows that out of the 14 economic predictors, only dividend yield ratio (dy)

displays significant positive predictive power for the market return at the 10% significance

level, while its in-sample R2 is larger than 1% (1.62% for dp and 1.90% for dy). All our

three aggregate predictors TSMCP LS , TSMCsP CA, and TSMCP LS+sP CA have positive

statistical significant slopes at 1%, and their in-sample R2’s are at 4.30%, 2.75%, and 4.28%,

respectively. Hence, they outperform the 14 economic predictors, as well as the short interest

and sentiment indices, in forecasting the excess stock market returns in-sample.

[Insert Table 7 about here]

We then investigate whether the predictive power of TSMCP LS remains significant after

controlling for economic predictors. We conduct the following bivariate predictive regres-

sions:

Rt+1 = α+ βTSMCP LS
t + ψZκ

t + εt+1, κ = 1, . . . , 16 (5.2)
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where Zκ
t is one of the 14 individual economic predictors, the sentiment index, or the short

interest index. Table 7b shows that the estimates of the regression slopes of TSMCP LS
t

remain statistically significant after controlling for each of the individual economic variables,

the sentiment index, or the short interest index, suggesting that economic fundamentals fail

to explain the impact of TSMCP LS on forecasting the excess stock market returns. Further,

the magnitude of the β estimates of TSMCP LS is quite large since they are greater than

0.82% in all cases, while all of the in-sample R2’s in equation (5.2) are greater than 4.30%

and substantially larger than those in equation (5.1), pointing out the economic significance

of TSMCP LS . Similarly to TSMCP LS , TSMCsP CA, and TSMCP LS+sP CA also reach the

same conclusions as shown in the Table 7c and Table 7d. Overall, Table 7 shows that

TSMCP LS has strong predictive ability for the excess stock market returns in-sample beyond

economic predictors.

5.2 Out-of-sample analysis

Although an in-sample analysis provides more efficient estimates and precise forecasts by

exploiting the entire sample period, Welch and Goyal (2008), among many others, argue

that out-of-sample forecasting evaluations are more relevant in practice. We start with an

initial estimation window to generate the first out-of-sample forecast return as follows:

R̂t+h = α̂+ β̂Xt (5.3)

where α̂ and β̂ are the OLS estimates of the predictive regression: Rt+h = α+ βXt + ϵt+h,

where Rt+h is the average stock market excess return over the prediction horizon h. We

then use an expanding estimation window approach and recursive predictive regressions to

generate the out-of-sample forecasts for the following periods until the end of the sample

period.

We evaluate the out-of-sample forecasting performance by using the R2
OS statistic of

Campbell and Thompson (2008) that measures the proportional reduction in mean squared

forecast error (MSFE) for the predictive regression relative to the historical average. The
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out-of-sample analysis is based on a 20-year expanding estimation window. This is in

line with Rapach, Strauss, and Zhou (2010), Huang et al. (2015) and Chen et al. (2022),

among others, who also use a relatively long initial estimation window so that the various

parameters in the aggregation techniques used in this section are estimated with more

precision In addition, we use the Clark and West (2007)’s MSFE-adjusted statistic for

testing the hypothesis H0 : R2
OS ≤ 0 against HA : R2

OS > 0 to uncover whether the

predictive forecasts generate a statistically significant improvement in MSFE.

[Insert Table 8 about here]

Table 8 presents the out-of-sample forecasting results. We find that all three aggregate

TSMC indices TSMCP LS , TSMCsP CA, and TSMCP LS+sP CA generate economically siz-

able out-of-sample R2
OS ’s across prediction horizons (up to two years, i.e., h=24). For

example, the R2
OS of TSMCP LS equals 1.07% at the monthly horizon, and increases to

over 5% for prediction horizons of six months and above (h ≥6). More importantly, the

R2
OS ’s of TSMCP LS are statistically significant across prediction horizons (except for h=3)

according to the MSFE adjusted statistics, meaning that the out of sample MSFEs gener-

ated by TSMCP LS are significantly lower than that of the historical means. Similarly to

TSMCP LS , TSMCsP CA and TSMCP LS+sP CA also generate statistically significant R2
OS ’s

in most of the prediction horizons we examine. Since a monthly out-of-sample R2
OS of 0.5%

can generate substantial economic value (Campbell and Thompson, 2008), in the follow-

ing sub-section, we also conduct an asset allocation analysis to examine potential gains for

mean-variance investors by using, TSMCP LS , TSMCsP CA, and TSMCP LS+sP CA.

5.3 Economic value of predicting stock index

This sub-section evaluates the economic value of forecasting stock market returns with

the aggregate predictor from the portfolio management perspective. Following Kandel

and Stambaugh (1996), Campbell and Thompson (2008), Ferreira and Santa-Clara (2011),

Huang et al. (2015), Jiang et al. (2019), Chen et al. (2022), among others, we use the cer-

tainty equivalent return (CER), which can be interpreted as the risk-free return that an
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investor would trade for a higher return associated with a given risk.

Suppose a mean-variance investor allocates his wealth between the stock market and

the risk-free asset. Assume that he is maximizing the next one-month expected utility by

investing a proportion of wt to the stock market and a proportion of 1 −wt to the risk-free

asset at the start of each month:

U(Rp,t+1) = E(Rp,t+1) − λ

2 Var(Rp,t+1) (5.4)

where E(Rp,t+1) and Var(Rp,t+1) denote the mean and variance of the excess portfolio

returns at t+ 1, and λ is the investor’s risk aversion. The investor’s portfolio return at the

end of each month (t+ 1) is given by:

Rp,t+1 = wtRt+1 +Rf ,t+1 (5.5)

where Rt+1 and Rf ,t+1 are the excess stock market return and the risk-free rate, respectively,

at t+ 1. With some simple algebra, one can easily compute the optimal portfolio weight to

the stock market, wt, at time t as follows:

wt =
1
λ

R̂t+1
σ̂2

t+1
(5.6)

where the mean (R̂t+1) and variance (σ̂2
t+1) estimates of the market excess returns at t+ 1

used for computing wt in Equation (5.6) are estimated based on information up to time t.

We use a 60 month rolling window for estimating the variance of market excess returns,

and follow Campbell and Thompson (2008) by ruling out short selling and allowing at most

50% leverage such that wt ≥ 0.

The CER of a portfolio is:

CER = µ̂p − 0.5λσ̂2
p (5.7)

where µ̂p and σ̂2
p are the mean and variance of portfolio excess returns over the entire out-

of-sample period. The difference between the CERs (and SRs) by using TSMCAGG and the
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historical means is a measure of the predictability’s economic value.

[Insert Table 9 about here]

Table 9 reports the annualized CER (%) gains from asset allocation of a mean-variance in-

vestor with λ = 1, 3, and 5 for predicting future market excess returns by using, TSMCP LS ,

TSMCsP CA, and TSMCP LS+sP CA, and relative to historical mean returns. We ob-

serve that the aggregate TSMC predictors generate economically sizable investment profits

across prediction horizons, except for TSMCsP CA, at the annual horizon when consider-

ing transaction costs. When there is no transaction cost, the CER gains of TSMCP LS ,

for λ = 1, 3, and 5 are 10.24%, 3.41%, and 2.05%, respectively, at the monthly horizon,

implying that an investor would be willing to pay an annual fee of up to 1024 (λ = 1),

314 (λ = 3), and 205 (λ = 5) basis points (bps) to access the predictive forecasts of

TSMCP LS . These large investment gains also maintain at longer investment horizons

and remain sizable when there is a transaction cost of 50 bps. Similarly to TSMCP LS ,

TSMCsP CA and TSMCP LS+sP CA also generate substantial investment profits. The CER

gains of TSMCsP CA (or TSMCP LS+sP CA) for λ = 1, 3, and 5 are 6.52% (10.25%), 2.17%

(3.42%), and 1.30% (2.05%), respectively, at the monthly horizon. These gains also exist

at longer investment horizons and remain sizable after considering for transaction costs.

In summary, there are potentially large economic gains in the asset allocation based

on aggregate TSMC predictors, suggesting substantial economic values for mean-variance

investors. This analysis then emphasizes the crucial role of aggregate predictors constructed

with TSMCs on the stock market from an investment management perspective.

5.4 Out-of-sample analysis with alternative methods

In the previous sub-sections, we have shown that market returns can be significantly pre-

dicted by, TSMCP LS , TSMCsP CA and TSMCP LS+sP CA. We now examine whether our

conclusions are robust to alternative econometric and machine learning methods. Particu-

larly, we consider the combination ENet (C-ENet) of Dong et al. (2022), the simple (average)

combination forecast of the individual univariate forecasts (Ave), and the Ridge shrinkage
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regression of Hoerl and Kennard (1970). These methods are introduced in detail in the

Supplementary (Online) Appendix.

[Insert Table 10 about here]

Table 10 presents the out-of-sample results. There are many observations. First, all the

three alternative methods generate economically sizable out-of-sample R2
OS ’s across predic-

tion horizons (up to two years, i.e., h=24). Second, all the R2
OS ’s generated by C-ENet

and Ridge are statistically significant across prediction horizons according to the MSFE-

adjusted statistics. Finally, while these there alternative methods work well for predicting

market returns, they generally underperform the PLS method especially for longer predic-

tion horizons. This finding is in accordance toKelly and Pruitt (2015)’s conclusion, e.g., the

PLS forecast is asymptotically consistent and generates the minimum MSFE as long as the

consistency condition is satisfied.

6 Conclusion

Building on the term structure modeling and option pricing literature, we develop a term

structure model based characteristic for individual commodities. This characteristic mea-

sures the downside risk premium implicit in the term structure of individual commodities’

futures. We find that this characteristic has strong explanatory power for the cross-section

of commodity returns. None of the well-known commodity market and equity market factors

are able to explain the returns of the H - L portfolio constructed from sorting this charac-

teristic. The returns also do not load on the market downside risk. This characteristic not

only explains the cross-section of commodity returns, but also predicts the stock market

returns. In an predictive exercise, we show that an aggregate commodity index constructed

from the individual characteristics using the PLS has significant predictive power for the

stock market returns that goes beyond the role of other typical economic predictors.

Our results point to new directions for future research in the commodity market. On

the one hand, the advance in the term structure modeling literature has proven fruitful in

commodity markets’ cross-sectional asset pricing. Nevertheless, more work can be done in
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extracting more information useful for asset pricing from futures prices using term structure

models. On the other hand, accurate measures of downside risk premium in individual

commodities seem to be rather heterogeneous. It remains an open question whether the

heterogeneity is due to financial market structure or industrial/production structure.
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Figure 1: Front month futures total return dynamics, January 2001 - March 2021

This figure plots the dynamics of total returns across the front month futures of all 29 commodities
from January 2001 to March 2021. The total returns start from one for all commodities. The solid
line is the cross-sectional mean, the grey area is the cross-sectional 90 and 10 percentiles.
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Figure 2: Dynamics of cross sectional risk premiums: January 2001 - March 2021

The five panels in this figure plot the dynamics of the cross-section TSMCs from January 2001 to
July 2020 for all types (All), Agriculture, Energy, Livestock, and Metals, respectively. The solid line
is the cross-sectional mean, the grey area is the cross-sectional maximum and minimum.
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Figure 3: H-L Portfolios cumulative returns

This figure plots the time series of the cumulative returns from high minus low portfolios sorted
by the TSMC (solid line), Basis (dashed line) and Momentum (dotted line). The sample period is
January 2001 - March 2021.
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Figure 4: Total variations explained by PCs

This figure plots the total variation in the panel of TSMCs explained by the first 10 PCs. The left
Y-axis measures the explained percentage by individual PCs, and the right Y-axis measures the
explained percentage cumulatively.
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Table 1: All commodity names and monthly return summary statistics

The left three columns of this table lists names, types, and Reuters Instrument Code (RIC) of
all 29 commodity futures in four types (seven Energy commodities, 14 Agriculture commodities,
three Livestock commodities, and five Metals commodities) included in our sample. The right five
columns present the summary statistics of the monthly returns of the front month futures for all 29
commodities. The summaries include Mean, Standard deviation (Std), Minimum (Min), Median,
and Maximum (Max). All number are shown in the raw value.

Commodity Type Name RIC Mean Std Min Median Max

Energy

Crude oil LCO 0.006 0.095 -0.469 0.013 0.337
Heating oil LHO -0.001 0.089 -0.320 0.001 0.253
Natural gas NG -0.020 0.133 -0.320 -0.021 0.516
RBOB gasoline RB 0.007 0.105 -0.599 0.013 0.335
Propane A7E 0.012 0.108 -0.256 0.026 0.302
Natural gas (ICE) NGLNQ -0.011 0.102 -0.316 -0.016 0.450
Gas oil LGO 0.007 0.094 -0.334 0.009 0.271

Agriculture

Corn C -0.001 0.081 -0.228 -0.009 0.283
Kansas wheat KW -0.001 0.086 -0.241 -0.008 0.360
Oats O 0.012 0.100 -0.267 0.005 0.350
Soybean meal SM 0.015 0.086 -0.272 0.009 0.301
Soybean oil BO 0.005 0.075 -0.252 0.002 0.269
Soybeans S 0.010 0.074 -0.234 0.009 0.196
Wheat W -0.004 0.088 -0.252 -0.008 0.377
Cocoa CC 0.009 0.091 -0.250 0.008 0.332
Coffee KC -0.002 0.091 -0.236 -0.011 0.436
Cotton CT 0.000 0.083 -0.226 0.004 0.247
Sugar SB 0.002 0.090 -0.297 -0.003 0.311
Rough rice RR -0.003 0.075 -0.228 -0.001 0.222
Orange juice OJ 0.001 0.089 -0.210 -0.007 0.276
Lumber LB 0.004 0.110 -0.322 -0.009 0.584

Livestock
Feeder cattle FC 0.002 0.046 -0.206 0.002 0.128
Lean hogs LH -0.001 0.091 -0.260 -0.002 0.385
Live cattle LC 0.002 0.046 -0.231 0.003 0.160

Metals

Copper HG 0.010 0.077 -0.360 0.007 0.354
Gold GC 0.007 0.048 -0.183 0.004 0.136
Palladium PA 0.018 0.081 -0.222 0.028 0.249
Platinum PL -0.001 0.063 -0.181 -0.001 0.140
Silver SI 0.009 0.091 -0.280 0.003 0.301
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Table 2: Summary of the TSMCs’ factor loadings on the first five PCs

This table reports a summary of the factor loading coefficients. The loading coefficients from time
series regressions in which all 29 TSMCs are regressed on the first five PCs. Cross-sectional averages
alongside standard deviations (in parentheses) are reported here. In the ‘All’ row, the loading
coefficients for all 29 TSMCs are included in the calculation, in other sector-specific rows, only
loading coefficients for the TSMCs in the corresponding sector are included in the calculation.

Sector PC1 PC2 PC3 PC4 PC5

All 0.102 0.059 0.045 0.042 0.052
(0.158) (0.179) (0.183) (0.184) (0.182)

Energy 0.005 -0.034 0.130 0.077 0.082
(0.169) (0.221) (0.168) (0.283) (0.119)

Agriculture 0.177 0.119 0.057 -0.012 0.050
(0.156) (0.185) (0.218) (0.139) (0.247)

Metal 0.015 0.053 -0.018 0.020 0.009
(0.074) (0.067) (0.050) (0.028) (0.059)

Live Stock 0.126 0.010 -0.108 0.245 0.058
(0.032) (0.113) (0.033) (0.139) (0.084)
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Table 3: Portfolio sorting with individual TSMC, Basis and Momentum

This table presents the average (equally weighted) monthly returns (in percentage) of the portfolios
sorted by individual TSMC, Basis and Momentum. The High (Low) portfolio includes commodities
in the quartile with the highest (lowest) values of a characteristic, i.e., TSMC, Basis, or Momentum.
The H-L is the difference between High and Low. The t-statics of these average monthly returns are
shown in the parentheses. The full sample period covers January 2001 to March 2021, the first half
is January 2001 to May 2011, and the second half is June 2011 to March 2021.

Sample Portfolio TSMC Basis Mom.

Full

High 0.69 0.47 0.24
(1.93) (1.33) (0.70)

Low -0.19 0.18 0.22
(-0.58) (0.59) (0.59)

H-L 0.87 0.29 0.02
(2.63) (0.84) (0.04)

1st Half

High 0.99 0.99 0.86
(1.95) (1.95) (1.61)

Low 0.04 0.05 0.10
(0.08) (0.12) (0.20)

H-L 0.93 0.94 0.76
(1.98) (1.91) (1.36)

2nd Half

High 0.38 -0.08 -0.42
(0.75) (-0.17) (-1.06)

Low -0.44 0.32 0.34
(-1.08) (0.73) (0.63)

H-L 0.82 -0.40 -0.76
(1.73) (-0.84) (-1.43)
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Table 4: Alphas of the TSMC H-L returns and other factors

In this table, the two columns under TSMC ∼ factors present the full sample alpha (monthly)
coefficients and R2 from regressing the TSMC H-L returns on various factors. The controlling factors
include: Basis (Basis H-L returns), BasisHnL (separate Basis High portfolio and Basis Low portfolio),
Momentum (Momentum H-L returns), Commodity Market (average returns of all commodities’
front month futures), Carry (commodity carry returns of Koijen et al., 2018), FF5F (returns of
Fama-French 5 factors), and All (all factors mentioned above). The four columns under Factors
∼ TSMC present results from time-series regressions of various factor returns on the TSMC H-
L returns. The factors include: Basis (Basis H-L returns), BasisH (Basis High portfolio) BasisL
(Basis Low portfolio), Momentum (Momentum H-L returns), Commodity Market, Carry, FF5F-
mkt (fama french market factor, the excess return on the equity market), FF5F-smb (fama french
size factor, the average return on the nine small stock portfolios minus the average return on the
nine big stock portfolios), FF5F-hml (fama french value factor, the average return on the two value
portfolios minus the average return on the two growth portfolios), FF5F-rmw (fama french Robust
Minus Weak factor, the average return on the two robust operating profitability portfolios minus
the average return on the two weak operating profitability portfolios), and FF5F-cma (fama french
Conservative Minus Aggressive, the average return on the two conservative investment portfolios
minus the average return on the two aggressive investment portfolios). The column labeled “Mean”
is the mean value of the factor return. Alpha is the regression intercept from regressing the factor
return on the TSMC H-L return. Beta is the loading of the factor return on the TSMC H-L return.
The final column reports the R2 of the regression. The full sample period covers January 2001 to
March 2021. The t-statistics based on Newey-West standard errors are reported in the parentheses.
Both Mean and Alpha and their standard errors are in percentage. ***, **, and * indicate 1%, 5%,
and 10% significance levels, respectively.

TSMC ∼ factors Factors ∼ TSMC

Factors Alpha R2 Mean Alpha Beta R2

Basis 0.75∗∗∗ 0.20 0.29 −0.11 0.46∗∗∗ 0.20
(2.72) (0.84) (−0.37) (7.58)

BasisHnL 0.72∗∗∗ 0.21
(2.72)

BasisH 0.47 0.16 0.35∗∗∗ 0.11
(1.33) (0.43) (4.42)

BasisL 0.18 0.27 −0.11∗ 0.01
(0.59) (0.80) (−1.74)

Momentum 0.87∗∗∗ 0.03 0.02 0.24 0.10∗∗ 0.02
(2.95) (0.04) (−0.35) (2.17)

Commodity Market 0.82∗∗∗ 0.02 0.32 0.22 0.39∗ 0.16
(2.94) (1.24) (0.75) (1.65)

Carry 0.65∗∗ 0.16 0.56∗ 0.48 0.20∗∗∗ 0.05
(2.15) (1.72) (0.66) (6.23)

FF5F 0.73∗∗ 0.08
(2.40)

FF5F-mkt 0.65∗∗ 0.48 0.20∗∗∗ 0.05
(2.25) (1.54) (3.11)

FF5F-smb 0.30∗ 0.22 0.09∗∗ 0.03
(1.73) (1.27) (2.30)

FF5F-hml 0.01 0.02 −0.01 0.00
(0.03) (0.07) (−0.29)

FF5F-rmw 0.34∗∗ 0.39∗∗ −0.06∗∗ 0.02
(2.40) (2.44) (−2.18)

FF5F-cma 0.16 0.20 −0.05∗∗∗ 0.02
(1.36) (1.56) (−2.78)

All 0.63∗∗ 0.28
(2.24)
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Table 5: Exposures to market downside risk

The table presents Lettau, Maggiori, and Weber (2014)’s two beta estimates and their implied alpha
for the four portfolios’ returns: TSMC, Basis, Momentum, and Commodity Market. βLMW ,mkt is
the full sample market beta and βLMW ,down is the sub-sample market beta where the excess market
return is one standard deviation below its sample mean. The implied alpha is the coefficient from
regressing ŷ on the vector of ones (without an intercept), where

ŷ = rPortfolio − βLMW ,mkt (rmkt − rdown) − βLMW ,down (rdown)

and rdown = 0 if rmkt > r̄mkt − σrmkt
and rdown = rmkt otherwise, r̄mkt and σrmkt

are the sample
mean and sample standard deviation of the market return, respectively. The t-statistics based on
Newey-West standard errors are reported in the parentheses. ***, **, and * indicate 1%, 5%, and
10% significance levels, respectively. The implied alphas are monthly and in percentage.

Portfolio Implied alpha βLMW ,mkt βLMW ,down

TSMC 0.79∗∗∗ 0.26∗∗∗ 0.35
(2.84) (3.17) (0.86)

Basis 0.67∗ 0.16∗ 0.65∗

(1.92) (1.80) (1.91)
Momentum 0.22 −0.18∗ −0.10

(0.55) (-1.75) (-0.27)
Commodity Market 0.72∗∗∗ 0.42∗∗∗ 1.10∗∗∗

(2.58) (5.13) (2.92)
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Table 6: Correlations of individual TSMCs

This table shows the pairwise correlations of the 24 TSMCs used in Section 5. We standardize all predictors to have zero mean and unit
variance. The sample spans the period from Feb 1994 to Mar 2021.

LGO C KW O SM BO S W CC KC CT SB RR OJ LB FC LH LC HG GC PA PL SI
LCO 0,29 0,30 0,31 0,32 0,20 0,03 0,26 0,40 0,15 -0,06 0,17 0,39 0,18 0,51 0,12 0,06 0,28 0,23 0,11 0,41 -0,05 0,45 -0,38
LGO -0,13 0,31 0,06 0,40 0,14 0,47 0,54 0,03 0,23 -0,32 0,40 0,37 0,56 -0,01 0,35 0,38 0,26 0,48 0,22 -0,57 0,30 -0,57

C 0,50 0,34 -0,01 0,19 0,09 0,20 0,00 0,12 0,30 0,02 -0,41 -0,07 0,11 -0,11 -0,13 0,02 0,14 0,02 0,05 -0,12 0,04
KW 0,40 0,03 0,22 0,12 0,67 0,05 0,13 0,11 0,25 -0,18 0,10 -0,22 0,38 0,23 0,38 0,58 0,06 -0,43 -0,04 -0,52

O 0,25 0,33 0,37 0,60 0,55 0,10 0,19 0,33 0,36 0,18 0,17 0,00 0,08 0,33 0,19 0,38 -0,14 0,36 -0,22
SM 0,29 0,90 0,44 0,39 0,34 -0,19 0,35 0,51 0,38 0,22 -0,09 0,09 0,00 -0,08 0,47 -0,23 0,34 -0,04
BO 0,56 0,33 0,29 0,02 0,29 0,18 0,22 0,09 0,22 0,29 0,03 0,42 0,19 0,30 -0,02 0,19 -0,11
S 0,54 0,42 0,30 -0,08 0,42 0,56 0,45 0,25 0,02 0,09 0,17 0,00 0,56 -0,23 0,42 -0,11

W 0,50 0,23 -0,03 0,58 0,44 0,50 -0,03 0,36 0,32 0,46 0,47 0,49 -0,53 0,44 -0,67
CC 0,03 0,04 0,20 0,46 0,27 0,33 -0,13 -0,02 0,18 0,04 0,37 -0,18 0,34 -0,10
KC -0,24 0,21 -0,05 0,18 0,08 -0,14 0,27 -0,18 0,10 0,37 0,07 0,18 -0,12
CT 0,19 -0,03 -0,08 0,05 0,24 0,03 0,33 0,16 0,10 0,16 0,04 0,01
SB 0,54 0,43 -0,05 0,29 0,31 0,41 0,29 0,50 -0,30 0,48 -0,50
RR 0,50 0,17 0,16 0,13 0,25 -0,03 0,43 -0,29 0,55 -0,24
OJ 0,22 0,15 0,48 0,19 0,28 0,60 -0,20 0,71 -0,56
LB -0,29 -0,11 -0,07 -0,04 0,15 0,11 0,16 0,16
FC 0,38 0,56 0,55 0,15 -0,31 0,14 -0,60
LH 0,11 0,45 0,47 -0,03 0,57 -0,69
LC 0,41 0,31 -0,28 0,19 -0,47
HG 0,07 -0,39 0,14 -0,67
GC 0,09 0,72 -0,37
PA 0,10 0,40
PL -0,49

–
42

of53
–



Table 7: In sample results: univariate and bivariate

Panel A reports the results (slopes, Newey-West t-values and in-sample R2s(%) ) of a univariate
predictive regression for predicting the market excess returns. The regression is: Rt+1 = α+ψZt +
ϵt+1, where Zt is either one of the 14 economic variables in Welch and Goyal (2008), the investor
sentiment index of Huang et al. (2015) denoted as S (available up to Dec 2020), the short interest
index of Rapach, Strauss, and Zhou (2010) denoted as SII, or an aggregate predictor of TSMCs
constructed with PLS (TSMCP LS), sPCA (TSMCsP CA), and PLS+sPCA (TSMCP LS+sP CA).
Panel B reports the results of a bivariate regression for forecasting the excess market returns with
the TSMCP LS and economic predictors. The regression is: Rt+1 = α+βXt +ψZt + ϵt+1, where Xt

denotes the TSMCP LS . Panel C reports the results of a bivariate regression for forecasting the excess
market returns with the TSMCsP CA and economic predictors. The regression is: Rt+1 = α+βXt +
ψZt + ϵt+1, where Xt denotes the TSMCsP CA. Panel D reports the results of a bivariate regression
for forecasting the excess market returns with the TSMCP LS+sP CA and economic predictors. The
regression is: Rt+1 = α+ βXt + ψZt + ϵt+1, where Xt denotes the TSMCP LS+sP CA. ***, **, and
* indicate significance at 1%, 5% and 10% levels, respectively. The sample spans the period from
Feb 1994 to Mar 2021. We standardize all predictors to have zero mean and unit variance.

(a) Univariate - GW and Indices

Variable ψ (%) R2 (%)

dp 0.56 1.55
dy 0.60** 1.83
ep 0.15 0.11
de 0.16 0.13
svar 0.07 0.02
b/m 0.34 0.60
ntis 0.25 0.30
tbl -0.26 0.34
lty -0.40 0.81
ltr 0.24 0.29
tms -0.12 0.07
dfy -0.11 0.06
dfr 0.23 0.28
infl 0.19 0.17
SII -0.54** 1.46
S -0.57*** 1.60
TSMCP LS 0.93*** 4.30
TSMCsP CA 0.74*** 2.75
TSMCP LS+sP CA 0.92*** 4.28

(b) Bivariate - GW and Indices: TSMCP LS

Variable β (%) ψ (%) R2 (%)

dp 0.84** 0.22 4.51
dy 0.82** 0.24 4.54
ep 1.02*** -0.25 4.56
de 0.97*** 0.30 4.73
svar 0.97*** 0.25 4.60
b/m 0.93*** 0.00 4.30
ntis 0.92*** 0.03 4.30
tbl 0.91*** -0.05 4.31
lty 0.88*** -0.23 4.56
ltr 0.94*** 0.28 4.69
tms 0.95*** -0.23 4.55
dfy 0.97*** 0.16 4.42
dfr 0.91*** 0.16 4.43
infl 0.94*** 0.24 4.59
SII 0.86*** -0.15 4.38
S 0.83*** -0.24 4.45
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(c) Bivariate - GW and Indices: TSMCsP CA

Variable β (%) ψ (%) R2 (%)

dp 0.65* 0.42 3.59
dy 0.63* 0.45 3.70
ep 0.79** -0.13 2.83
de 0.81*** 0.33 3.28
svar 0.79*** 0.23 3.02
b/m 0.70** 0.15 2.85
ntis 0.73*** 0.02 2.75
tbl 0.72** -0.13 2.83
lty 0.70** -0.31 3.23
ltr 0.75*** 0.27 3.12
tms 0.76*** -0.21 2.97
dfy 0.79*** 0.16 2.86
dfr 0.73*** 0.17 2.90
infl 0.74** 0.20 2.95
SII 0.63** -0.22 2.93
S 0.66** -0.44** 3.69

(d) Bivariate - GW and Indices: TSMCP LS+sP CA

Variable β (%) ψ (%) R2 (%)

dp 0.83** 0.23 4.50
dy 0.82** 0.25 4.53
ep 1.02*** -0.25 4.54
de 0.97*** 0.30 4.72
svar 0.97*** 0.25 4.59
b/m 0.92*** 0.00 4.28
ntis 0.92*** 0.02 4.28
tbl 0.91*** -0.05 4.29
lty 0.88*** -0.23 4.54
ltr 0.94*** 0.28 4.67
tms 0.95*** -0.23 4.54
dfy 0.97*** 0.17 4.41
dfr 0.91*** 0.16 4.41
infl 0.94*** 0.24 4.57
SII 0.86*** -0.15 4.36
S 0.82*** -0.24 4.45

– 44 of 53 –



Table 8: Out of sample results: univariate

This table reports the out-of-sample R2
OSs and MSFE-adjusted statistics for predicting the average

excess stock market returns over the prediction horizon h by using the aggregate predictor based on
TSMCs constructed with PLS (Panel A), sPCA (Panel B), and the simple (average) combination
of PLS and sPCA: PLS+sPCA (Panel C). h=1 month, 3, 6, 9 ,12 , 18, and 24 months. Statistical
significance for the R2

OS ’s is based on the p-value of Clark and West (2007) MSFE-adjusted statistic.
The out-of-sample analysis is based on a 20-year expanding estimation window. The sample spans
the period from Feb 1994 to Mar 2021. *, **, and *** indicate significance at the 10%, 5%, and 1%
level, respectively.

Panel A: TSMCP LS Panel B: TSMCsP CA Panel C: TSMCP LS+sP CA

Horizon R2
OS (%) MSFE-adjusted R2

OS (%) MSFE-adjusted R2
OS (%) MSFE-adjusted

h=1 1.07* 1.31 1.34 1.24 1.09* 1.31
h=3 1.99 1.07 3.32 1.22 2.07 1.08
h=6 6.19** 2.17 7.41* 1.39 6.30** 2.13
h=9 5.35** 1.66 7.42* 1.35 5.47** 1.67
h=12 8.19* 1.59 6.94* 1.32 8.18* 1.58
h=18 13.16* 1.39 12.15* 1.58 13.17* 1.40
h=24 21.67* 1.48 20.83** 1.94 21.79* 1.49
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Table 9: Economic value results

This table reports the annualized CER gains (%) for a mean-variance investor with λ = 1, 3 & 5 for
predicting future market excess returns by using PLS, sPCA, and PLS+sPCA relative to historical
mean returns across prediction horizons. We consider two cases: zero transaction cost and a pro-
portional transaction cost of 50 basis points per transaction. The sample spans the period from Feb
1994 to Mar 2021.

(a) CER(%) Gain− TSMCP LS

TCs=0 bps λ = 1 λ = 3 λ = 5 TCs=50 bps λ = 1 λ = 3 λ = 5

h=1 10.24 3.41 2.05 h=1 6.62 2.21 1.32
h=3 9.49 3.16 1.90 h=3 5.89 1.96 1.18
h=6 8.27 2.76 1.65 h=6 5.09 1.70 1.02
h=9 6.80 2.27 1.36 h=9 3.93 1.31 0.79
h=12 3.16 1.05 0.63 h=12 0.49 0.16 0.10
h=18 6.61 2.20 1.32 h=18 4.61 1.54 0.92
h=24 5.03 1.68 1.01 h=24 3.41 1.14 0.68

(b) CER(%) Gain− TSMCsP CA

TCs=0 bps λ = 1 λ = 3 λ = 5 TCs=50 bps λ = 1 λ = 3 λ = 5

h=1 6.52 2.17 1.30 h=1 3.39 1.13 0.68
h=3 5.53 1.84 1.11 h=3 2.70 0.90 0.54
h=6 3.20 1.07 0.64 h=6 0.58 0.19 0.12
h=9 3.17 1.06 0.63 h=9 0.81 0.27 0.16
h=12 0.43 0.14 0.09 h=12 -1.65 -0.55 -0.33
h=18 4.64 1.55 0.93 h=18 3.23 1.08 0.65
h=24 2.32 0.77 0.46 h=24 1.15 0.38 0.23

(c) CER(%) Gain− TSMCP LS+sP CA

TCs=0 bps λ = 1 λ = 3 λ = 5 TCs=50 bps λ = 1 λ = 3 λ = 5

h=1 10.25 3.42 2.05 h=1 6.63 2.21 1.33
h=3 9.48 3.16 1.90 h=3 5.91 1.97 1.18
h=6 8.20 2.73 1.64 h=6 5.04 1.68 1.01
h=9 6.77 2.26 1.35 h=9 3.91 1.30 0.78
h=12 3.09 1.03 0.62 h=12 0.44 0.15 0.09
h=18 6.63 2.21 1.33 h=18 4.65 1.55 0.93
h=24 4.99 1.66 1.00 h=24 3.38 1.13 0.68
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Table 10: Out of sample results using alternative aggregation approaches

This table reports the out-of-sample R2
OSs and MSFE-adjusted statistics for predicting the average

excess stock market returns over the prediction horizon h by using the aggregate predictor based
on TSMCs constructed with C-ENet (Panel A), simple average combination (Panel B), and Ridge
(Panel C). h=1 month, 3, 9, 12, 18, and 24 months. Statistical significance for the R2

OSs is based on
the p-value of Clark and West (2007) MSFE-adjusted statistic. The out-of-sample analysis is based
on a 20-year expanding estimation window. The sample spans the period from Feb 1994 to Mar
2021. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.

Panel A: TSMCC−ENet Panel B: TSMCAve Panel C: TSMCRidge

Horizon R2
OS (%) MSFE-adjusted R2

OS (%) MSFE-adjusted R2
OS (%) MSFE-adjusted

h=1 1.41* 1.44 0.14 0.81 0.06* 1.53
h=3 4.39* 1.48 0.33 0.64 0.20* 1.52
h=6 7.71* 1.33 1.15* 1.40 0.50* 1.55
h=9 9.12* 1.43 1.08 1.22 0.68* 1.56
h=12 3.02* 1.28 1.38 1.09 0.88* 1.54
h=18 1.55* 1.57 2.85* 1.31 1.50* 1.61
h=24 3.39** 1.92 4.71** 1.68 2.35** 2.19
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A Kalman filter

We present a bespoke KF procedure designed for our estimation method outlined in Sec-

tion 3.2. For more general KF references, please see Harvey (1989, Chapter 3) and Hamilton

(1994, Chapter 13). We start the KF by choosing the initial values of the state variables and

their covariance matrix as their steady state values Y0|0 = [r0, δ0,X0]
⊺ , and PY ,0|0 = 03×3,

where r0 is the Treasury yield with the shortest maturity on the first day of the sample,

X0 is the log of the front month futures price on the first day of the sample, δ0 is a free

parameter to be estimated alongside other parameters. Given Yt−h|t−h and PY ,t−h|t−h, the

ex ante prediction of the state variables and their covariance matrix are given by

Yt|t−h = eKP
1 hYt−h|t−h and PY ,t|t−h = eKP

1 hPY ,t−h|t−h

(
eKP

1 h
)⊺

+Ω(KP
1 ,h),

Given Yt|t−h and PY ,t|t−h, the ex ante predictions of the measurement and the associated

covariance become

log
(
F

∆t
t|t−h

)
=
ι⊺Ω (K1,∆t) ι

2 + ι⊺ [exp(K1∆t) − I ]K−1
1 K0 + ι⊺ exp(K1∆t)Yt|t−h

P
log

(
F

∆t
t

) =MPY ,t|t−1M
⊺ + ξInt×nt ,

where M is nt × 3 and its ith row is ι⊺ exp(K1∆ti) with ∆ti being the time to maturity of

the ith futures on day t and i = 1, 2, . . . ,nt. Finally, the ex post updates on the filtered

state variables are given by

Yt|t = Yt|t−h +Ξt

(
log

(
F

∆t
t

)
− log

(
F

∆t
t|t−h

))
and PY ,t|t = PY ,t|t−h −ΞtP

log
(

F
∆t
t

)Ξ⊺
t ,

where Ξt = PY ,t|t−1MP−1
log

(
F

∆t
t

) is the Kalman gain. Yt|t is used to compute the RPt on

day t.
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B Technical details on forecasting stock index

We consider the following one-period forecasting model:

Rt+1 = α+ βTSMC∗
t + ϵt+1 (B.1)

where Rt+1 denotes the realized excess stock market return at t+ 1. TSMC∗
t represents

the true but unobservable aggregate TSMC at t that matters for forecasting Rt+1 and

ϵt+1 is a noise term unrelated to TSMC∗
t . Let IndTSMC,t = (IndTSMC1,t, . . . , IndTSMCN ,t)

⊺

denotes an N × 1 vector of individual TSMCs at t. Assume the following factor structure

for IndTSMCi,t (i = 1, 2, ...N),

IndTSMCi,t = ni,0 + ni,1TSMC∗
t + ni,2ϵt + ei,t (B.2)

where ni,1 is the regression slope that captures IndTSMCi,t’s sensitivity to TSMC∗
t . ϵt is the

common approximation error component of all individual TSMCs that is irrelevant to stock

returns, and ei,t represents idiosyncratic noise.

Our aim here is to efficiently estimate the relevant for forecasting, but unobservable,

aggregate index TSMC∗
t by imposing a factor structure equation (B.2) on IndTSMCi,t and

filtering out the irrelevant components ϵt and eit when estimating TSMC∗
t . Hence, we

consider a popular information aggregating method, the Partial Least Squares (PLS), as

well as a shifting technique of PLS and 1/N . The latter is suitable when constructing

and evaluating aggregate indices in the out-of-sample. PLS is an efficient technique for

constructing aggregate predictors as shown in Kelly and Pruitt (2013, 2015), and Light,

Maslov, and Rytchkov (2017), among others.

To extract TSMC∗
t , PLS exploits the covariance between TSMC∗

t and future stock mar-

ket returns, and uses a linear combination of individual TSMCs (IndTSMCi,t) for predicting

stock returns. PLS follows a two-step process involving a time-series regression in the first

step and a cross-sectional regression in the second step. In the first step, the time-series
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regression of each IndTSMCi,t on a constant and future realized excess stock return Rt+1 is:

IndTSMCi,t = π0 + πiRt+1µi,t, for i = 1, . . . ,N (B.3)

where the regression slope πi captures the sensitivity of each individual TSMC to the un-

observable aggregate index TSMC∗
t . Since the latter drives the future stock market returns

as shown in equation (B.1), each IndTSMCi,t is unrelated with any unforecastable errors,

and hence the slope πi,1 is a good approximation on how each IndTSMCi,t depends on the

unobservable aggregate commodity index TSMC∗
t .

In the second step, the cross-sectional regression is as follows:

IndTSMCi,t = c0 + TSMCP LS
t π̂i + vi,t, for i = 1, . . . ,N (B.4)

where the independent variable π̂i in regression equation (B.3) has been estimated during the

first step of the PLS method in regression equation (B.3). The aggregate PLS commodity

index TSMCP LS is the slope in regression equation (B.4) to be estimated.

Mathematically, the two-step PLS algorithm can be expressed as a one-step liner com-

bination of IndTSMCi,t where the weight on each IndTSMCi,t in TSMCP LS depends on their

covariance with the future realized excess stock return.

TSMCP LS = (TSMCP LS
1 , TSMCP LS

2 , ..., TSMCP LS
T )⊺

is computed as follows:

TSMCP LS = IndTSMC · JN · Ind⊺TSMC · JT ·R ·K ·R⊺ · JT ·R (B.5)

where K = (R⊺ · JT · IndTSMC · JT · Ind⊺TSMC · JT · R)−1; R = (R2, . . . RT+2)⊺ denotes

the T × 1 vector of excess stock returns, and IndTSMC = (Ind⊺TSMC1
, . . . , Ind⊺TSMCT

)⊺ is

the T × N matrix of individual TSMCs. The matrices JT = IT − 1
T ℓT · ℓ⊺T and JN =

IN − 1
N ℓN · ℓ⊺N are present in equation (B.5) because the regressions in each step of the
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algorithm are run with a constant; IX is the X-dimensional identity matrix, and ℓX is a

X × 1 vector of ones. PLS exploits the factor nature of the joint system in equation (B.1)

and equation (B.2) to infer the relevant for forecasting aggregate index TSMCP LS by using

future stock returns to extract TSMC∗ and eliminating the negative effects of common and

idiosyncratic components that are not relevant for predicting.

C Additional results on forecasting stock index

[Insert Table A1 about here]
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Table A1: Univariate-individual TSMCs

This table reports the in-sample sample R2’s(%) from the regression: Rt+h = α+ βIndComi,t +
ϵt+1, where IndComi,t is the univariate-individual TSMC. The regression slopes and the Newey-
West t-values are reported in each Panel. ***, **, and * indicate significance at 1%, 5% and 10%
levels, respectively. The sample spans the period from Feb 1994 to Mar 2021. We standardize all
predictors to have zero mean and unit variance.

Panel A: h = 1 Panel B: h = 6 Panel C: h = 12

Variable ψ (%) R2 (%) ψ (%) R2 (%) ψ (%) R2 (%)

TSMCP LS 0.93*** 4.30 0.89*** 21.71 0.81*** 34.12
TSMCsP CA 0.74*** 2.75 0.69** 13.28 0.57** 17.21
TSMCP LS+sP CA 0.92*** 4.28 0.89** 21.60 0.81*** 33.79
LCO 0.00 0.00 -0.02 0.02 -0.03 0.06
LGO -0.29 0.41 -0.32 2.91 -0.35* 6.06
C 0.47 1.10 0.48** 6.33 0.52*** 14.05
KW 0.41* 0.84 0.37* 3.89 0.29* 4.62
O 0.24 0.30 0.14 0.55 0.04 0.08
SM -0.11 0.07 -0.21 1.31 -0.25 3.43
BO 0.44* 0.95 0.42* 4.81 0.38* 7.40
S -0.13 0.08 -0.09 0.23 -0.10 0.55
W -0.11 0.07 -0.12 0.42 -0.12 0.76
CC -0.15 0.12 -0.26 1.85 -0.22 2.43
KC 0.37* 0.71 0.27 2.12 0.21 2.46
CT 0.65** 2.13 0.58* 9.37 0.42* 9.58
SB 0.11 0.06 0.04 0.05 -0.01 0.01
RR -0.38 0.71 -0.37 3.98 -0.43* 9.98
OJ -0.13 0.09 -0.13 0.45 -0.15 1.16
LB 0.18 0.16 0.06 0.11 0.06 0.19
FC 0.06 0.02 0.07 0.14 0.11 0.65
LH 0.01 0.00 0.05 0.07 0.04 0.07
LC 0.19 0.18 0.27 2.05 0.27 3.91
HG 0.24 0.29 0.25 1.83 0.24 3.09
GC 0.08 0.03 0.11 0.36 0.12 0.80
PA 0.12 0.07 0.24 1.71 0.33* 5.78
PL -0.07 0.02 -0.13 0.49 -0.19 1.94
SI 0.13 0.09 0.04 0.04 0.03 0.05

– 53 of 53 –


	1 Introduction
	2 Term structure model for futures and option pricing
	2.1 Commodity futures
	2.2 Option pricing and TSMC
	2.3 Downside risk interpretation of the basis

	3 Data and model estimation
	3.1 Data
	3.2 Kalman filter and maximum likelihood estimation
	3.3 Summary of the characteristics
	3.4 Principal component analysis

	4 Commodity asset pricing
	4.1 Portfolio sorting
	4.2 Potential explanations for the TSMC portfolio
	4.3 Can TSMC returns explain other factors?

	5 Predicting stock market returns using TSMCs
	5.1 In-sample analysis and comparison with economic variables
	5.2 Out-of-sample analysis
	5.3 Economic value of predicting stock index
	5.4 Out-of-sample analysis with alternative methods

	6 Conclusion
	A Kalman filter
	B Technical details on forecasting stock index
	C Additional results on forecasting stock index

